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1. Introduction

"When you play against Bobby [Fischer], it
is not a question of whether you win or lose.
It is a question of whether you survive."

−Boris Spassky, World Chess Champion,
1969 - 1972.

Maximizing their employees’ efforts is one of the chief goals of the firm. To this extent, firms typically

encourage competition among their employees and allocate bonuses according to their performance

and effort. At the same time, firms want to hire the best workers – preferably, the ones who are

“superstars” in their fields. For this reason, it is not unusual to see million-dollar hiring contracts

among the Forbes top 500 firms.

However, hiring a superstar employee might potentially cause unintentional side effects. Brown

(2011) took a creative approach to analyze these potential side effects by considering a famous golf

superstar: Tiger Woods. Her goal was to uncover whether Tiger Woods had a positive or negative

effect on his competitors’ performance. She compared performances in tournaments with and without

Tiger Woods and unveiled that there was a sharp decline in performance in tournaments where Tiger

Woods competed. This evidence points out that Tiger Woods, as a superstar, creates a psychological

pressure on his competitors which has a discouraging effect, causing them to perform worse than

their typical performance.

In this paper, we analyze the superstar effect using chess data.1 Chess provides a clean setting to

analyze the superstar effect for the following reasons: First, non-player related factors are minimal

to non-existent in chess since every chess board is the same for all players.2 Second, the move-level

performance indicators can be obtained with the use of computer algorithms that can evaluate the

quality of each move and estimate the complexity of each unique position. Third, multiple chess

superstars exist who lived in different time periods and come from different backgrounds, enhancing

1There is growing literature studying a broad range of questions using data from chess competitions. For example,
Levitt et al. (2011) test whether chess masters are better at making backward induction decisions. Gerdes and Gränsmark
(2010) test for gender differences in risk-taking using evidence from chess games played between male and female players,
where they find that women choose more risk-averse strategies playing against men. On the one hand, Backus et al.
(2016) and Smerdon et al. (2020) find that female players make more mistakes playing against male opponents with
similar strength. On the other hand, Stafford (2018) has an opposite finding that women perform better against men with
similar Elo ratings. Dreber et al. (2013) test the relationship between attractiveness and risk-taking using chess games.

2There is no compelling reason to expect a systematic difference in the environmental factors to directly affect a tour-
nament performance. However, Künn et al. (2019) and Klingen and van Ommeren (2020) find that indoor air quality has
effects on performance and risk-taking behavior of chess players.
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the external validity of the study.3

To begin with, we present a two-player contest model with a "superstar." Our theory suggests

that the skill gap between the superstar and the other player is crucial to determine the superstar

effect on the competition. If this gap is small, then the superstar effect is positive: both players exert

high effort. However, when the skill gap is large, the superstar effect is negative: both players lower

their efforts. Our theory provides explanations for different superstar effects in the literature. The

negative superstar effect in golf is found not only in Brown (2011), but also in Tanaka and Ishino

(2012)4, while the positive superstar effect in track and field events is found in Hill (2014). He

compares the performance of athletes in runs where Usain Bolt is competing and where Usain Bolt

is not present, finding that athletes perform much better when Usain Bolt is competing. This can

be attributed to non-superstar athletes being motivated by having Usain Bolt running just “within

their reach”, enabling them to push one step further and show extra effort.

Then, we test our theory on five different male and female chess superstars who come from

different backgrounds and time periods: Magnus Carlsen, Garry Kasparov, Anatoly Karpov, Bobby

Fischer, and Hou Yifan.5 We are looking for direct (individual competition with a superstar) and

indirect (performance in a tournament with a superstar) superstar effects in chess tournaments. To

find these effects, we analyze 2.1 million move-level observations from elite chess tournaments that

took place between 1962 to 2019 with the world’s top chess players. Our main performance indicator

is unique to chess: the "Average Centipawn Loss" (ACPL), which shows the amount of error a player

commits in a game.6 In chess, a player’s goal is to find the optimal move(s). Failing to do so would

result in mistake(s), which the ACPL metric captures. Having multiple mistakes committed in a

game almost certainly means losing at the top level chess tournaments. We then test the following

hypotheses:

1. Direct effect: Do players commit more mistakes (than they are expected to) playing head-to-

head against a superstar?

2. Indirect effect: Do players commit more mistakes (than they are expected to) in games played

against each other if a superstar is present in the tournament as a competitor?
3In the media, "The Queen’s Gambit" gives a realistic portrayal of a chess superstar. The protagonist, Beth Harmon, is

a superstar who dominates her peers in tournaments. In this paper, we analyze the real-life chess superstar effect on their
peers in actual tournaments.

4Their superstar is Masashi Ozaki who competed in the Japan Golf Tour and dominated the tournaments he partici-
pated in throughout the 1990s.

5We discuss why these players are “chess superstars" in Section 3.
6The Average Centipawn Loss is also referred to as "mean-error". We provide details on how we use this metric in

Section 3.4.
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Holding everything else constant, a player should be able to show the same performance in find-

ing the best moves in two "similarly complex" chess positions. The difficulty of finding the optimal

moves − assuming players show full effort − is related to two main factors: (1) External factors

impacting a player. For instance, being under pressure can lead the player to choke, resulting in

more mistakes. (2) The complexity of the position that the player faces. If both players are willing

to take risks, they can opt to keep more complex positions on the board, which raises the likelihood

that a player commits a mistake. To isolate the "choking effect", we construct a complexity metric

using a state-of-the art Artificial Neural Network (ANN) algorithm that is trained with an indepen-

dent sample with more than 2 million moves.7 By controlling board complexity, we compare games

with identical difficulty levels. If a player commits more mistakes against the superstar (or in the

presence of a superstar) in similarly complex games, it must be that either (i) the player chokes un-

der pressure (that is, even if the player shows full effort, the mental pressure of competing against

a superstar results in under-performance) or (ii) the player gives up and does not show full effort,

considering his or her ex-ante low winning chances (this results in lower performance with more

mistakes committed), or both (i) and (ii).

We find a strong direct superstar effect: in similarly complex games, players commit more

mistakes and perform below their expected level when they compete head-to-head against the su-

perstar. This result can be explained by both the choking and the giving up effects. Consequently,

players are less likely to win and more likely to lose in these games compared to their games against

other opponents.

We show that the indirect superstar effect depends on the skill gap between the superstar

and the competition. As our theory predicts, we find that if this gap is small, the indirect superstar

effect is positive: it seems that the players believe they indeed have a chance to win the tournament

and exert higher effort. The data shows that the top 25 percent of the tournament participants

improve their performances and commit fewer mistakes. However, if the skill gap is large, then

the indirect superstar effect is negative: it seems that players believe that their chances to win

the tournament are slim, and/or that competing at the same tournament with a superstar creates

psychological pressure. As a result, the top players show an under-performance with more mistakes

and more losses. Interestingly, there is a tendency for the top players to play more complex games

in tournaments with a superstar. This suggests that the choking effect is more dominant than the

giving up effect.

7The details of the algorithm are provided in Section 3.5.
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Our results provide clear takeaways for organizations: hiring a superstar can have potential

spillover effects, which could be positive for the whole organization if the superstar is slightly better

than the rest of the group. However, the organization can experience negative spillover effects if the

skill gap between the superstar and the rest of the group is substantial. Thus, managers should

compare the marginal benefit of hiring an "extreme" superstar to the potential spillover costs on

the whole organization.8 Moreover, hiring a marginally-better superstar can act as a performance

inducer for the rest of the team.

The superstar literature started from Rosen (1981), who makes the first contribution in the un-

derstanding of "superstars" by pointing out how skills in certain markets become excessively valu-

able. One of the most recent theoretical contributions in the "superstar" literature is Xiao (2020),

who demonstrates the possibility of having positive or negative incentive effects when a superstar

participates in a tournament. These effects depend on the prize structure and the participants’ abil-

ities.

Lazear and Rosen (1981), Green and Stokey (1983), Nalebuff and Stiglitz (1983), and Moldovanu

and Sela (2001) describe how to design optimal contracts in rank-order tournaments. Prendergast

(1999) provides a review on incentives in workplaces.

The empirical sports superstar literature started from Brown (2011)9 and is ranging from pro-

fessional track and field competitions to swimming. Yamane and Hayashi (2015) compare the per-

formance of swimmers who compete in adjacent lanes and find that the performance of a swimmer

is positively affected by the performance of the swimmer in the adjacent lane. In addition, this effect

is amplified by the observability of the competitor’s performance. Specifically, in backstroke competi-

tions where observability of the adjacent lane is minimal, there appears to be no effect, whereas the

effect exists in freestyle competitions with higher observability. Jane (2015) uses swimming compe-

titions data in Taiwan and finds that having faster swimmers in a competition increases the overall

performance of all the competitors participating in the competition.

Topcoder and Kaggle are the two largest crowdsourcing platforms where contest organizers can

run online contests offering prizes to contestants who score the best in finding a solution to a diffi-

8Mitigating the negative effects by avoiding within-organization pay-for-performance compensation schemes is a possi-
bility. However, it is challenging to eliminate all competition in an organization.

9Connolly and Rendleman (2014) and Babington et al. (2020) point out that an adverse superstar effect may not be as
strong as suggested by Brown (2011). They claim that this result is not robust to alternative specifications and suggest
that the effect could work in the opposite direction – that the top competitors can perhaps bring forth the best in other
players’ performance. In addition, Babington et al. (2020) provide further evidence using observations from men’s and
women’s FIS World Cup Alpine Skiing competitions and find little to no peer effects when skiing superstars Hermann
Maier and Lindsey Vonn participate in a tournament. Our theory can suggest an explanation for these findings.
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cult technical problem stated at the beginning of the contest. Archak (2010) finds that players avoid

competing against superstars in Topcoder competitions. Studying the effect of increased competition

on responses from the competitors, Boudreau et al. (2016) discover that lower-ability competitors

respond negatively to competition, while higher-ability players respond positively. Zhang, Shunyuan

and Singh, Param Vir and Ghose, Anindya (2019) suggest that there may potentially be future ben-

efits from competitions with superstars: the competitors will learn from the superstar. This finding

is similar to the positive peer effects in the workplace and in the classroom, see Mas and Moretti

(2009), Duflo et al. (2011), Cornelissen et al. (2017), Moreira (2019).

The rest of the paper is organized as follows: Section 2 presents a two-player tournament model

with a superstar. Section 3 gives background information on chess and describes how chess data is

collected and analyzed. Section 4 provides the empirical design. Section 5 presents the results, and

section 6 concludes.

2. Theory

In this section, we consider a two-player contest in which player 1 competes against a superstar,

player 2.10 Player 1 maximizes his expected payoff, consisting of expected benefits minus costly

effort11

max
e1

e1

(e1 +θe2)
V1 − e1,

where e i is the effort of player i = 1,2, V1 is a (monetary or rating/ranking) prize which player 1 can

win, and θ is the ability of player 2. We normalize the ability of player 1 at one. Player 2, a superstar,

has high ability θ ≥ 1 and maximizes her expected payoff:

max
e2

θe2

(e1 +θe2)
V2 − e2,

where V2 is the prize that player 2 can win. Note that θ is not only the ability of player 2, but also

the ratio of that player’s abilities.12

10Tullock (1980) discussed a similar model, but did not provide a formal analysis.
11We assume that costs are linear functions.
12For chess professionals, prizes are monetary payments as well as Elo rating points (which we discuss in section 3.1) at

the conclusion of a tournament. High Elo rating increases the probability to be invited to the future elite chess tournaments
and is even more important than a monetary reward.

6



The first order conditions for players 1 and 2 are

θe2

(e1 +θe2)2 V1 −1= 0,

and
θe1

(e1 +θe2)2 V2 −1= 0.

Therefore, in an equilibrium
e2

e1
= V2

V1
.

We can state our theoretical results now.

Proposition 1 Suppose that V1 > V2. Then, there exists a unique equilibrium in the two-player

superstar contest model, where player i = 1,2 exerts effort

e∗i =
θV1V2

(V1 +θV2)2 Vi.

In the equilibrium, player i = 1,2 wins the contest with the probability p∗
i , where

(p∗
1 , p∗

2)=
(

V1

V1 +θV2
,

θV2

V1 +θV2

)
.

We assume that the prize for the underdog is greater than the prize for the superstar in the

two-player contest: everyone expects the superstar to win the competition and her victory is neither

surprising, nor too rewarding. However, the underdog’s victory makes him special, which is also

evident from rating point calculations in chess: a lower rated player gains more rating points if

he wins against a higher ranked player.13 It follows from proposition 1 that the underdog, player

1, always exerts higher effort than the superstar, player 2, in the equilibrium, since V1 > V2. In

addition, underdog’s winning chances decrease in the superstar abilities. We have the following

comparative statics results.

Proposition 2 Suppose that V1 > V2. Then, individual equilibrium efforts increase in the superstar

ability if θ∗ < V1
V2

and decrease if θ∗ > V1
V2

. Individual equilibrium efforts are maximized if the superstar

ability is θ∗ = V1
V2

.

13The statement of Proposition 1 holds without the assumption about prizes.
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Proposition 2 gives a unique value of the superstar ability which maximizes individual and total

equilibrium efforts. This observation suggests the best ability of a superstar for the contest designer.

Figure 1: Equilibrium effort and winning probabilities with prizes V1 = 10 and V2 = 4.

Figure 1 illustrates this proposition and shows how equilibrium efforts and winning probabilities

change for different levels of superstar abilities if V1 = 10 and V2 = 4. When the ability ratio is small,

effort levels for both players increase. As the ability ratio increases, both players decrease their

efforts. In other words, if the gap between the superstar and the underdog abilities is small, the

superstar effect is positive as both players exert higher efforts. However, if the superstar is much

better than the underdog, then both players shirk in their efforts and the superstar effect is negative.

3. Data

3.1 Chess: Background

"It is an entire world of just 64 squares."

−Beth Harmon, The Queen’s Gambit,
Netflix Mini-Series (2020)

Chess is a two-player game with origins dating back to 6th century AD. Chess is played over a

8x8 board with 16 pieces for each side (8 pawns, 2 knights, 2 bishops, 2 rooks, 1 queen, and 1 king).

Figure 2 shows a chess board. Players make moves in turns, and the player with the white pieces
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moves first. The ultimate goal of the game is to capture the enemy king. A game can end in three

ways: white player wins, black player wins, or the game ends in a draw.

8 rmblkans
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPOPOPO
1 SNAQJBMR

a b c d e f g h

Figure 2: A chess board

The possible combinations of moves in a chess game is estimated to be more than the number of

atoms in the universe.14 However, some moves are better than others. With years of vigorous train-

ing, professional chess players learn how to find the best moves by employing backward-induction

and calculating consequences of moves to a certain complexity level. Failing to find the best move(s)

in a position would result in a "blunder" or a "mistake" which typically leads to the player losing their

game at the top level if a player commits multiple blunders or mistakes. The player who performs

better overall is the player who manages to find the correct moves more often.

The standard measure of player strength in chess is the Elo rating system first adopted by FIDE

in 1970. This system was created by the Hungarian physicist Arpad Elo (Elo 1978). Elo considers

the performance of a player in a given game as a random variable normally distributed around her

unobservable true ability. Each player gets a starting Elo rating which is updated according to the

outcome of each game via

ELOR,t+1 = ELOR,t +K
[
Si −E t

(
Si | Ri,R j

)]
, (1)

where Si is the outcome of a game such that Si = 1 if player i wins the game, Si = 0 if player i

loses the game, and Si = 1/2 if the game ended in a draw. E t
(
Si | Ri,R j

)
is the expected probabil-

ity of player i winning the game given the Elo ratings of the two players Ri and R j which equals

14A lower bound on the number of possible moves is 10120 moves, per Shannon (1950) while the number of atoms in the
observable universe is estimated to be roughly 1080.
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E
(
Si | Ri,R j

) =Φ(
Ri−R j

400

)
where Φ(.) is the c.d.f. of the normal distribution.15 K is a parameter for

rate of adjustment.

This rating system allows comparisons of players’ strengths. For instance, every month, FIDE

publishes Elo ratings of all chess players. The Top 10 players are considered the most elite players

in the world who earn significant amounts of prizes and sponsorships. Moreover, chess titles have

specific Elo rating requirements. For instance, the highest title in chess, Grandmaster, requires the

player to have an Elo rating 2500 or higher.16

Over the past decades, computer scientists have developed algorithms, or "chess engines" that

exploit the game-tree structure of chess. These engines analyze each possible tree branch to come up

with the best moves. The early chess engines were inferior to humans. After a few decades, however,

one chess engine developed by IBM in the 1990s, Deep Blue, famously defeated the world chess

champion at the time, Garry Kasparov, in 1997. This was the first time a world chess champion lost

to a chess engine under tournament conditions. Since then, chess engines have passed well beyond

the human skills. As of 2021, Stockfish 11 is the strongest chess engine with an Elo rating of 3497.17

In comparison, the current world chess champion, Magnus Carlsen, has an Elo rating of 2862.18

In addition to finding the best moves in a given position, a chess engine can be used to analyze

the games played between human players.19 The quality of a move can be measured numerically by

evaluating the move chosen by a player and comparing it to the list of moves suggested by the chess

engine. If the move played by a player is considered a bad move by the engine, then that move is

assigned a negative value with its magnitude depending on the engine’s evaluation.20

15The probability that player i wins a game against player j is a function of their true abilities. Let pi be the performance
of player i, with pi ∼ N(µi ,σ2) and pi i = 1, , ..n independent draws. Player i wins if P(pi > p j) or P(pi − p j > 0). With pi

and p j independent, pi − p j ∼ N(µi −µ j ,2σ2). Therefore P(pi − p j > 0)= P
( (pi−p j)−(µi−µ j)p

2σ2
> −(µi−µ j)p

2σ2

)
= P

(
z > −(µi−µ j)p

2σ2

)
=

P
(
z < (µi−µ j)p

2σ2

)
=Φ

(
µi−µ jp

2σ2

)
where z is the standard normal.

16Our sample consists of the very elite chess players, often called "Super GMs", with Elo ratings higher than 2700 in
most cases.

17Modern chess engines, such as Stockfish, have much higher Elo ratings compared to humans. Most modern computers
are strong enough to run Stockfish for analyzing chess positions and finding the best moves, which is the engine we use in
our analyses.

18The highest Elo rating ever achieved by a human was 2882 in May 2014 by Magnus Carlsen.
19Every chess game played at the top level is recorded, including all the moves played by the players.
20Engine evaluation scores in chess have no impact on the game outcomes. Engines are used in post-game analysis

for learning and research purposes. They are also used during live broadcasting, such that the audience can see which
player maintains an advantage. The use of a computer engine by a player during a game is against fair play rules and is
equivalent to using Performance Enhancing Drugs (PEDs) for other sports.
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3.2 Chess Superstars

The first official world chess champion is Wilhelm Steinitz who won the title in 1886. Since Steinitz,

there have been sixteen world chess champions in total. Among these sixteen players, four have

shown an extraordinary dominance over their peers: Magnus Carlsen, Garry Kasparov, Anatoly

Karpov, and Bobby Fischer.21 We present evidence why these players were so dominant and con-

sidered "superstars" in their eras. Specifically, we define a superstar as a player who satisfies the

following conditions: (i) be the world chess champion; (ii) win at least 50% of all tournaments partic-

ipated in;22 (iii) maintain an Elo rating at least 50 points above the average Elo rating of the world’s

top 10 players (this condition must hold for the post-1970 era when Elo rating was introduced); (iv)

have such a high Elo rating that just winning an elite tournament is not sufficient to gain Elo rating

points. We define an elite tournament, a tournament which has (1) at least two players from the

world’s Top 10 and (2) the average Elo rating in the tournament is within 50 points of the average

Elo rating in tournaments with a superstar.

Magnus Carlsen is the current world chess champion, who first became champion in 2013 at

age 22. He reached the highest Elo rating ever achieved in history. Garry Kasparov was the world

champion from 1985-2000 and was the number one ranked chess player for 255 months, setting a

record for maintaining the number one position for the longest duration of time. For comparison,

Tiger Woods was the number one ranked player in the world for a total of 683 weeks, the longest

ever in golf history. Anatoly Karpov was the world champion before Kasparov in the years 1975-

1985. He won over 160 tournaments, which is a record for the highest number of tournaments won

by a chess player.23 Bobby Fischer was the world champion before Karpov between 1972 - 1975,

winning all U.S. championships he played in from 1957 (at age 14) to 1966. Fischer won the 1963

21In his classic series, "My Great Predecessors", Kasparov (2003) gives in-depth explanations about his predecessors,
outlining qualities of each world champion before him. In this paper, we consider the "greatest of the greatest" world
champions as "superstars" in their eras.

22For comparison, Tiger Woods won 24.2 percent of his PGA Tour events.
23Kasparov (2003) shares an observation on Karpov’s effect on other players during a game in Moscow in 1974: "Tal,

who arrived in the auditorium at this moment, gives an interesting account: "The first thing that struck me (I had not yet
seen the position) was this: with measured steps Karpov was calmly walking from one end of the stage to the other. His
opponent was sitting with his head in his hands, and simply physically it was felt that he was in trouble. ’Everything would
appear to be clear,’ I thought to myself, ’things are difficult for Polugayevsky.’ But the demonstration board showed just the
opposite! White was a clear exchange to the good − about such positions it is customary to say that the rest is a matter of
technique. Who knows, perhaps Karpov’s confidence, his habit of retaining composure in the most desperate situations, was
transmitted to his opponent and made Polugayevsky excessively nervous." p. 239 "My Great Predecessors" Vol 5.
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U.S. chess championship with a perfect 11 out of 11 score, a feat no other player has ever achieved.24

In addition to the four male superstars, we consider a female chess superstar: Hou Yifan, a four

time women’s world chess champion between the years 2010-2017. She played three women’s world

chess championship matches in this period and did not lose a single game against her opponents,

dominating the tournaments from 2014 until she decided to stop playing in 2017.25

Figures A.2–A.6 show how the four world chess champions: Carlsen, Kasparov, Karpov and Hou

Yifan performed compared to their peers across years.26 The Elo rating difference between each

superstar and the average of world’s top 10 players in each corresponding era is about 100 points.

This rating gap is very significant, especially at top-level competitive chess. For instance, the ex-

pected win probabilities between two players with a gap of 100 Elo rating points are approximately

64%-36%.

Figures A.13–A.17 show individual tournament performances across years for each superstar

with the vertical axis showing whether the superstar gained or lost rating points at the end of a

tournament. For instance in 2001, Kasparov played in four tournaments and won all of them. In one

of these tournaments, he even lost rating points despite winning. For the world’s strongest player,

winning a tournament is not sufficient to maintain or gain rating points because he also has to win

decisively.27

Table 1 presents statistics of the superstars’ dominance. Panels A-E include the World’s Top

10 chess players for the corresponding era and a summary of their tournament performances. For

example, Magnus Carlsen participated in 35 tournaments with classical time controls between 2013

and 2019, winning 21 of them. This 60% tournament win rate is two times higher than World’s #2

chess player, Fabiano Caruana, who has a tournament win rate of 30%. A more extreme case is

Anatoly Karpov, who won 26 out of 32 tournaments, which converts to an 81% tournament win rate

while the runner up Jan Timman had a tournament win rate of 22%.28

24Kasparov (2003) on Fischer’s performance in 1963 U.S. championship: "Bobby crushed everyone in turn, Reshevsky,
Steinmeyer, Addison, Weinstein, Donald Byrne... Could no one really withstand him?! In an interview Evans merely spread
his hands: ’Fantastic, unbelievable...’ Fischer created around himself such an energy field, such an atmosphere of tension, a
colossal psychological intensity, that this affected everyone." See p. 310 "My Great Predecessors" Vol 4.

25Not losing a single game in world championship matches is a very rare phenomenon since the world champion and the
contestant are expected to be at similar levels.

26Elo rating information is not available for Fischer’s era. FIDE adopted the Elo rating system in 1970.
27See Figures A.13–A.17 for cases in which the superstar player won a tournament, but nevertheless lost rating points.

The superstar must win a tournament by a large margin to maintain #1 rating level.
28Restricting the runner-ups’ tournament wins to tournaments in which a superstar participated lowers their tourna-

ment win rate significantly. Tables are available upon request.
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3.3 ChessBase Mega Database

Our data comes from the 2020 ChessBase Mega Database containing over 8 million chess games dat-

ing back to the 1400s. Every chess game is contained in a PGN file which includes information about

player names, player sides (White or Black), Elo ratings, date and location of the game, tournament

name, round, and the moves played. An example of a PGN file and a tournament table is provided

in the appendix. See Table A.2 and Figure A.1.

Table A.1 in the appendix provides a summary of variables used and their definitions. Table 2

presents the summary statistics for each era with tournaments grouped according to the superstar

presence. In total, our study analyzes over 2 million moves from approximately 35,000 games played

in over 300 tournaments between 1962 and 2019.29

3.4 Measuring Performance

3.4.1 Average Centipawn Loss

Our first metric comes from computer evaluations where we identify mistakes committed by each

player in a given game.30 A chess game g consists of moves m ∈ {1, . . . , M} where player i makes an

individual move mig. A chess engine can evaluate a given position by calculating layers with depth

n at each decision node and make suggestions about the best moves to play. Given a best move is

played, the engine provides the relative (dis)advantage in a given position Ccomputer
igm . This evaluation

is then compared to the actual evaluation score Cplayer
igm once a player makes his or her move. The

difference in scores reached via the engine’s top suggested move(s) and the actual move a player

makes can be captured by

error igm =
∣∣∣Ccomputer

igm −Cplayer
igm

∣∣∣ . (2)

If the player makes a top suggested move, the player has committed zero error, i.e., Ccomputer
igm =

Cplayer
igm . We can think of chess as a game of attrition where the player who makes less mistakes

eventually wins the game. While staying constant if top moves are played, the evaluation shows an

advantage for the opponent if a player commits a mistake by playing a bad move.

29A list of the tournaments is provided in the appendix.
30Guid and Bratko (2006) and Regan et al. (2011) are two early examples of implementations of computer evaluations in

chess.
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We then take the average of all the mistakes committed by player i in game g via

error ig =
∑M

m=1

∣∣∣Ccomputer
igm −Cplayer

igm

∣∣∣
M

, (3)

which is a widely accepted metric named Average Centipawn Loss (ACPL). ACPL is the average

of all the penalties a player is assigned by the chess engine for the mistakes they committed in a

game. If the player plays the best moves in a game, his ACPL score will be small where a smaller

number implies the player performed better. On the other hand, if the player makes moves that are

considered bad by the engine, the player’s ACPL score would be higher.

We used Stockfish 11 in our analysis with depth n = 19 moves.31 For each move, the engine was

given half a second to analyze the position and assess |Ccomputer
igm −Cplayer

igm |. Figure A.8 shows an

example of how a game was analyzed. For instance, at move 30, the computer evaluation is +3.2,

which means that the white player has the advantage by a score of 3.2: roughly the equivalent of

being one piece (knight or bishop) up compared to his opponent. If the white player comes up with

the best moves throughout the rest of the game, the evaluation can also stay 3.2 (if the black player

also makes perfect moves) or only go up leading to a possible win toward the end of the game. In

the actual game, the player with the white pieces lost his advantage by making bad moves and

eventually lost the game. The engine analyzes all 162 moves played in the game and evaluates the

quality of each move. Dividing the sum of mistakes committed by player i to the total number of

moves played by player i gives the player-specific ACPL score.

3.4.2 Board Complexity

Our second measure that reinforces our ACPL metric is "board complexity" which we obtain via an

Artificial Neural Network (ANN) approach. The recent developments with AlphaGo and AlphaZero

demonstrated the strength of using heuristic-based algorithms that perform at least as good as the

traditional approaches, if not better.32 Instead of learning from self-play, our neural-network algo-

rithm "learns" from human players.33 To train the network, we use an independent sample published

as part of a Kaggle contest consisting of 25,000 games and more than 2 million moves, with Stockfish

31While it is possible to consider higher depths, n = 19 depth is more than sufficient for Stockfish to make accurate
searches. See Guid and Bratko (2017) who consider sensitivity in depth levels 2-12, or Backus et al. (2016) who use depth
level 15.

32https://en.chessbase.com/post/leela-chess-zero-alphazero-for-the-pc
33Sabatelli et al. (2018) and McIlroy-Young et al. (2020) are two recent implementations of such architecture.
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evaluation included for each move.34 The average player in this sample has an Elo rating of 2280,

which corresponds to the "National Master" level according to the United States Chess Federation

(USCF).35

z2 w2 Σ f

Activation

function
y

Output

z1 w1

z3 w3

Weights

Bias

b

Inputs

Figure 3: Example of a simple perceptron, with 3 input units (each with its unique weight) and 1 output unit.

z1
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...
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y(1)
1

y(1)
2

...

y(1)
m(1)

. . .

. . .

. . . y(k)
1

y(k)
2

...

y(k)
m(k)

y(k+1)
1

input layer
1st hidden layer kth hidden layer

output layer

Figure 4: Network graph of a multilayer neural network with (k+1) layers, N input units, and 1 output unit. Each
neuron collects unique weights from each previous unit. The kth hidden layer contains m(k) neurons.

The goal of the network is to predict the probability of a player making a mistake with its mag-

nitude. This task would be trivial to solve for positions that were previously played. However, each

chess game reaches a unique position after the opening stage which requires accurate extrapolation

of human play in order to predict the errors.36 We represent a chess position through the use of its
34https://www.kaggle.com/c/finding-elo/data
35http://www.uschess.org/index.php/Learn-About-Chess/FAQ-Starting-Out.html
36This approach is vastly different than traditional analysis with an engine such as Stockfish. Engines are very strong

and can find the best moves. However, they cannot give any information about how a human would play in a given situation
because they are designed to find the best moves without any human characteristics. Our neural-network algorithm is
specifically designed to learn how and when humans make mistakes in given positions from analyzing mistakes committed
by humans from a sample of 2 million moves.
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12 binary features, corresponding to the 12 unique pieces on the board (6 for White, 6 for Black). A

chess board has 8×8 = 64 squares. We split the board into 12 separate 8×8 boards (one for each

piece) where a square gets "1" if the piece is present on that particular square and gets "0" otherwise.

In total, we represent a given position using 12×8×8= 768 inputs. We add one additional feature to

represent the players’ turn (white to move, or black to move) and thus have 768+1 = 769 inputs in

total per position. Figure 4 illustrates. 37

The neural network "learns" from 25,000 games by observing each of the approximately two

million positions and estimates the optimal weights by minimizing the error rate that results from

each possible set of weights with the Gradient Descent algorithm. The set of 1,356,612 optimal

weights uniquely characterizes our network. We use two networks to make a prediction on two

statistics for a given position: (i) probability that a player commits an error and (ii) the amount

of error measured in centipawns. For a full game, the two statistics multiplied (and averaged out

across moves) gives us an estimate for the ACPL that each player is expected to get as the result of

the complexity of the game

E(error ig)=
∑M

m=1P
(∣∣∣Ccomputer

igm −Cnetwork
igm

∣∣∣> 0
) ∣∣∣Ccomputer

igm −Cnetwork
igm

∣∣∣
M

, (4)

where
∣∣∣Ccomputer

igm −Cnetwork
igm

∣∣∣ is the expected centipawn loss in a given position predicted by the neu-

ral network. We test our network’s performance on our main "superstars" sample.38 The mean ACPL

for the whole sample with 35,000 games is 25.87, and our board complexity measure, which is the

expected ACPL that we obtained through our network, is 26.56.39 Figure A.11 shows a scatterplot

of ACPL and the expected ACPL. The slope coefficient is 1.14, which implies that a point increase

in our complexity measure results in a 1.14 point increase in the actual ACPL score.40 Figure A.12

shows the distributions of ACPL and the expected ACPL.

The board complexity measure addresses the main drawback of using only ACPL scores. The

37We use a network architecture with three layers. Figure 3 illustrates. The layers have 1048, 500, and 50 neurons,
each with its unique weight. In order to prevent overfitting, a 20% dropout regularization on each layer is used. Each
hidden layer is connected with the Rectified Linear Unit (ReLU) activation function. The Adam optimizer was used with a
learning rate of 0.001.

38Figures A.9–A.10 show our network’s prediction on a game played by Magnus Carlsen.
39The reason why our network −which was trained with games played at on average 2280 Elo level− makes a close

estimate for the ACPL in the main sample is that the estimates come from not a single player with Elo rating 2280, but
rather from a "committee" of players with Elo rating 2280 on average. Hence the network is slightly "stronger" compared
to an actual 2280 player.

40The highest ACPL prediction of the network is 50.2 while about 8% of the sample has an actual ACPL > 50.2. These
extreme ACPL cases are under-predicted by the network due to the network’s behavior as a "committee" rather than a
single player, where the idiosyncratic shocks are averaged out.
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ACPL score of a player is a function of his or her opponent’s strength and their strategic choices. For

instance, if both players find it optimal to not take any risks, they can have a simple game where

players make little to no mistakes, resulting in low ACPL scores. Yet, this would not imply that

players showed a great performance compared to their other −potentially more complex− games.

Being able to control for complexity of a game enables us to compare mistakes committed in similarly-

complex games.

3.4.2 Game outcomes

The third measure we use is game-level outcomes. Every chess game ends in a win, a loss, or a draw.

The player who wins a tournament is the one who accumulates more wins and fewer losses, as the

winner of a game receives a full point toward his or her tournament score.41 In other words, a player

who has more wins in a tournament shows a higher performance. In terms of losses, the opposite is

true. If a player has many losses in a tournament, their chances to win the tournament are slim. Of

course, a draw is considered better than a loss and worse than a win.

4. Empirical Design

Our baseline model compares a player’s performance in a tournament where a superstar is present

with their performance in a tournament without a superstar. This can be captured by the following

equation:

Per f ormance i, j =β0 +β1Superstar j ×HighELOi, j +β2Superstar j ×MidELOi, j

+β3Superstar j ×LowELOi, j +β4HighELOi, j +β5MidELOi, j

+ΘX i, j +ηi +εi, j, (5)

where Per f ormance i, j is the performance of player i in tournament j, measured by methods dis-

cussed in section 3.4. Superstar j is an indicator for a superstar being present in tournament j. εi, j

is an idiosyncratic shock. Having negative signs for coefficients β1, β2, and β3 means that the su-

perstar presence creates an adverse effect: players are discouraged to demonstrate their best efforts

resulting in worse performance outcomes. HighELOi, j equals one if the player has an Elo rating

within the top quartile in the Elo rating distribution of the tournament participants. MidELOi, j

41A draw brings half a point, while a loss brings no points in a tournament.
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captures the second and third quartiles, and LowELOi, j captures the bottom quartile. ΘX i, j con-

tains the game and tournament level controls. In addition to tournament level specifications, chess

allows for a game level analysis which can be specified as the following:

Per f ormance i, j,k =α0 +α1 AgainstSuperstar i, j,k +ΦX i, j +ηi +εi, j,k, (6)

where AgainstSuperstar i, j,k equals one if player i in tournament j plays against a superstar in

round k. In this specification, α1 captures the effect of head-to-head competition against a superstar.

Note that chess superstars as a rule play in the strongest tournaments, which guarantees more

money and higher prestige. However, it is not possible to play in all top-level tournaments.42 Typi-

cally, if a player competes in a world championship match in a given year, (s)he tends to play in fewer

tournaments in that particular year to be able to prepare for the world championship match.43 In

years without a world championship match, the world champion typically picks a certain number

of tournaments to participate in. (S)he may play in fewer tournaments if (s)he believes that the

schedule does not allow for adequate preparation for each tournament. We control for the average

Elo rating in a tournament to account for any selection issues.44

5. Results

Table 3 shows the performance of non-superstar players playing against a superstar for each sample.

There is a distinct pattern that is true for all superstars: playing against them is associated with

a higher ACPL score, more blunders, more mistakes, lower chances to win, and higher chances to

lose. What is more, games played against superstars are more complex. This higher complexity

could be due to the superstar’s willingness to reach more complex positions in order to make the

ability-gap more salient. It could also be linked to a non-superstar player taking more risk.45 Taken

42In our sample with elite tournaments, a tournament with a superstar has, on average, an average Elo score that is
50 points higher compared to the tournaments without a superstar. This shows that chess superstars indeed play in the
strongest tournaments.

43We indeed document a negative correlation between the number of tournaments a superstar plays and world champi-
onship years. These results are available upon request.

44Linnemer and Visser (2016) document self-selection in chess tournaments with stronger players being more likely to
play in tournaments with higher prizes. A central difference between their sample and ours is the level of tournaments,
with their data coming from the World Open tournament, which is an open tournament with non-master participants with
Elo ratings between 1400-2200. Meanwhile, our sample consists of players from a much more restricted sample with only
the most elite Grandmasters having Elo ratings often above 2700. Moreover, these high-level tournaments are invitation
based; i.e., tournament organizers offer invitations to a select group of strong players, with these restrictions working
against any possible selection issues.

45It is not a trivial task to identify which player initiates complexity. Typically, complex games are reached with mutual
agreement by players, avoiding exchanges and keeping the tension on the board.
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as a whole, players commit more blunders and mistakes, holding board complexity constant. For

instance, a player who plays against Fischer shows an ACPL that is 4.3 points higher compared

to his games against other players with a similar complexity level. His likelihood is 10 percentage

points less for a win, 18 percentage points less for a draw, and 29 percentage points higher for a loss

compared to his typical games. This implies that in terms of direct competition, these superstars

have a strong dominance over their peers. Hou Yifan shows the strongest domination, with Fischer

closely following behind. The magnitudes for ACPL, win, and loss probabilities are stronger for these

players compared to the rest of the samples.46

Tables A.4–A.9 show the effect of a superstar’s presence on the performance of other competitors.

An adverse effect on the top players exists for the most dominant superstar of our sample, Hou

Yifan.47 Her presence is associated with an ACPL score that is 4.3 points higher, 11 percentage

points less chances of winning, and 15 percentage points higher chances of losing for the top players

in a tournament. For Fischer, the coefficients for ACPL, blunders, and mistakes are positive, and

stronger for the top players of his era. Fischer’s opponents indeed had more draws and less complex-

games, which agrees with the findings in Moul and Nye (2009) on Soviet collusion.

Another situation with intense competition is when two superstars, Kasparov and Karpov, both

participate in a tournament. This means that for a given player, he or she will have to face both

Kasparov and Karpov and perform better than both of them in order to win the tournament. This

tough competition appears to lead to more decisive games and less draws, with players committing

fewer blunders and mistakes. The top quartile of players, who try to compete with Kasparov and

Karpov, experience high pressure and as a result, experience more losses. Despite these players also

win more games, it does not offset their losses.48

Players perform better if they face only Kasparov or Karpov in the tournament compared to

facing both superstars in the tournament. With one superstar, either Kasparov or Karpov, in the

tournament, players have higher chances of winning the tournament and as a result, play more

accurately and manage to get more wins, with substantial gains in the ACPL score and less mistakes

committed. This improvement is the strongest for the top quartile of players.

Similar to facing Kasparov or Karpov alone, Carlsen’s presence creates a slight positive effect on

46Taken as a whole, these findings verify that the superstars considered in our study indeed show greater performance
compared to their peers.

47A potential explanation for why the most dominant superstar in our sample is a female chess player could be related to
the Central Limit Theorem. There are much less female than male chess players. A smaller sample has higher variance,
making it more likely to produce outliers. See Bilalić et al. (2009) for a discussion of this phenomenon.

48In fact, as a spillover, the bottom quartile of players show better performance with Kasparov and Karpov’s presence.
These players have more wins and fewer losses as a result of a worsened performance by the upper quartile.
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his competitors’ performance. Players play more accurately and make fewer mistakes under higher

challenges with more complex positions. The positive effect appears to apply to all participants.49

Table 4 shows the impact of superstar presence for all samples aggregated. Table 5 and Figure 5

show the aggregate superstar effect broken down to each sub-sample for the top quartile players.

Moving from Carlsen to Hou Yifan, we observe increases in the committed mistakes, in game com-

plexity, in blunders and mistakes, and in the loss rates. At the same time, the win and draw rates

decrease, confirming our theory that an increase in the intensity of a superstar is associated with

stronger adverse responses from the top players. When the gap between the superstar and the rest

of the group is not too wide, all players perform better. As the gap widens, performance drops are

anticipated.

6. Conclusion

The empirical superstar literature finds both positive and negative superstar effect evidence. For

example, in golf, the effort level decreases with the superstar presence. However, in the 100-meter

running or swimming contests, the effort level appears to increase. In this paper, we show theoreti-

cally and empirically that the superstar effect depends on the intensity of the superstar: if the skill

gap between the superstar and the rest of the field is small, then the superstar effect is positive;

otherwise, if the skill gap is large, the superstar effect is negative.

Using the chess data, we empirically show that the direct superstar (head-to-head) effect is al-

ways negative and the indirect superstar effect depends on the skill gap. We find a strong choking

effect in head-to-head games with a superstar. Players commit more mistakes than they are expected

to when they face a superstar in a head-to-head game. These findings for five chess superstars are

consistent with Brown (2011)’s findings for Tiger Woods.

The takeaway for firms seeking to hire a superstar employee is that hiring a superstar employee

may create a positive or an adverse effect on the cohort’s performance depending on the skill level

gap. If the gap is too large, there is a negative effect of hiring a superstar employee. In these

settings, a highly skilled team member would hurt competition and create an adverse effect on the

rest of the team members. Such adverse effect can occur in many environments. For example, in a

classroom, a superstar student may discourage other students from learning in a competitive setting.

Maintaining a healthy competition is the key for a productive environment.

49Draw rates are higher in tournaments with Carlsen. Many chess fans criticize modern chess for excessive amount of
draws, which we document in our analysis.
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Tables & Figures

Table 2: Summary statistics for all samples.

years: 2013-2019 years: 1995-2001

with Carlsen without Carlsen with Kasparov without Kasparov

variable mean sd mean sd mean sd mean sd

ACPL 16.580 10.755 17.818 11.783 20.554 12.687 21.233 12.947

Difficulty 26.784 5.309 27.040 5.419 27.792 5.576 27.300 5.528

TotalBlunder .179 .508 .229 .576 .238 .562 .288 .686

TotalMistake 1.432 1.797 1.682 1.943 1.772 1.892 1.876 2.006

win .173 .378 .204 .403 .230 .421 .229 .421

draw .654 .476 .592 .491 .545 .498 .541 .498

loss .173 .378 .204 .403 .224 .417 .229 .420

ELO 2759 47.13 2714 80 2684 59.36 2642 65.52

Moves 43.031 15.682 45.198 17.682 38.551 16.280 38.765 15.656

#of tournaments =35 =37 =22 =43

#of games =1,336 =1,774 =1,727 =3,696

#of moves =114,898 =160,362 =133,184 =286,787

years: 1987-1994 years: 1976-1983

with Kasparov

& Karpov

without Kasparov

& Karpov
with Karpov without Karpov

ACPL 20.762 12.068 21.592 13.235 21.777 13.501 23.099 14.091

Difficulty 27.139 5.555 26.850 5.811 25.461 5.873 26.007 5.787

TotalBlunder .264 .603 .317 .684 .271 .639 .327 .727

TotalMistake 1.821 1.902 1.922 2.028 1.850 2.040 2.061 2.089

win .221 .415 .234 .423 .223 .416 .251 .433

draw .561 .496 .533 .499 .553 .497 .499 .500

loss .218 .413 .234 .423 .224 .417 .250 .433

ELO 2629 60.68 2590 55.97 2558 68.05 2531 76.24

Moves 38.917 16.898 39.635 16.810 36.699 17.542 37.964 17.118

#of tournaments =11 =37 =32 =39

#of games =635 =1,989 =1,967 =3,641

#of moves =50,212 =157,668 =144,633 =278,876

Notes: Superstar player observations are exluded in each sample. Data comes from Chessbase Mega
Database 2020.
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Table 2: Summary statistics for all samples. (cont.)

years: 1962-1970 years: 2014-2019

with Fischer without Fischer with Hou Yifan without Hou Yifan

ACPL 24.017 15.634 25.284 15.670 22.466 14.500 21.128 12.301

Difficulty 25.835 5.599 26.077 5.747 27.193 5.225 27.162 5.045

TotalBlunder .342 .768 .349 .746 .405 .736 .380 .755

TotalMistake 2.173 2.128 2.311 2.254 2.341 2.344 2.267 2.209

win .254 .435 .250 .433 .270 .444 .241 .428

draw .492 .500 .500 .500 .459 .499 .519 .500

loss .254 .435 .250 .433 .270 .444 .241 .428

ELO . . . . 2493 72.50 2499 43.43

Moves 38.126 16.458 36.112 15.628 45.823 19.041 46.179 17.511

#of tournaments =15 =82 =4 =6

#of games =1,660 =7,832 =440 =748

#of moves =126,578 =565,611 =40,324 =69,084

Notes: Superstar player observations are exluded in each sample. Data comes from Chessbase Mega
Database 2020.
∗: Elo rating system was first adopted by FIDE beginning 1970.

Table 3: Performance against a superstar.

(1) (2) (3) (4) (5) (6) (7)

ACPL TotalBlunder TotalMistake win draw loss Difficulty
# of

games

# of

moves

Against Carlsen 1.868*** 0.080*** 0.174** -0.069*** -0.100*** 0.169*** 0.172 3,316 294,876

2013-2019 (0.449) (0.026) (0.085) (0.015) (0.023) (0.025) (0.252)

Against Kasparov 2.300*** 0.093** 0.226** -0.104*** -0.049 0.153*** 1.485*** 5,770 446,322

1995-2001 (0.634) (0.046) (0.095) (0.012) (0.035) (0.037) (0.346)

Against Kasparov/Karpov 2.757*** 0.174*** 0.184* -0.102*** -0.078*** 0.180*** -0.427 2,768 219,607

1987-1994 (0.656) (0.033) (0.093) (0.016) (0.027) (0.030) (0.326)

Against Karpov 3.171*** 0.167*** 0.150* -0.106*** -0.089*** 0.195*** 0.522** 5,326 396,903

1976-1983 (0.579) (0.036) (0.083) (0.012) (0.024) (0.024) (0.253)

Against Fischer 4.379*** 0.150*** 0.222 -0.106*** -0.186*** 0.292*** 2.255*** 9,626 703,525

1962-1970 (0.949) (0.040) (0.149) (0.022) (0.032) (0.040) (0.361)

Against Hou Yifan 4.415** 0.203*** 0.502 -0.111*** -0.203*** 0.314*** 0.839** 1,232 113,436

2014-2019 (1.530) (0.047) (0.437) (0.031) (0.034) (0.029) (0.331)

Against Superstar 2.523*** 0.101*** 0.105* -0.0917*** -0.0750*** 0.167*** 0.639*** 27,854 2,174,669

1962-2019 (0.312) (0.016) (0.055) (0.008) (0.014) (0.015) (0.155)

Notes: All regressions include player and year fixed effects, round fixed effects, event site fixed effects, board complexity measured
by our neural-network algorithm (except in column 7), opponent ACPL, player’s side (white or black), and number of moves played.
Clustered standard errors (clustered by tournament) are shown in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 4: Performance in tournaments with and without a Superstar (overall effect).

(1) (2) (3) (4) (5) (6) (7)

ACPL TotalBlunder TotalMistake win draw loss Difficulty

Superstar effect for

Top 25% players -0.326 -0.037* 0.069 -0.006 0.011 -0.005 0.368**

(0.352) (0.019) (0.054) (0.011) (0.015) (0.015) (0.174)

Mid 50% players -0.585** -0.022 -0.062* 0.009 -0.001 -0.008 0.169

(0.243) (0.015) (0.035) (0.008) (0.011) (0.009) (0.138)

Bottom 25% players -0.029 -0.042* 0.046 0.003 0.008 -0.011 0.063

(0.381) (0.022) (0.047) (0.011) (0.013) (0.013) (0.165)

Number of moves 1,216,450 1,216,450 1,216,450 1,216,450 1,216,450 1,216,450 1,216,450

Number of games 20,295 20,295 20,295 20,295 20,295 20,295 20,295

Notes: Superstars’ games are excluded. Top 25% is defined as having an Elo rating in the top 25% among the competitors at the time of
the tournament. Bottom 25% is defined as having an Elo in the bottom quartile. All regressions include player and year fixed effects,
round fixed effects, event site fixed effects, average Elo rating in the tournament, player’s Elo rating, board complexity measured by our
neural-network algorithm, opponent ACPL, player’s side (white or black), and number of moves played. Clustered standard errors
(clustered by tournament) are shown in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 5: Performance in tournaments with and without a superstar for the top players.

(1) (2) (3) (4) (5) (6) (7)

ACPL TotalBlunder TotalMistake win draw loss Difficulty
# of

games

# of

moves

Carlsen present -0.080 0.040 -0.128 0.010 0.022 -0.032 0.756** 3,110 275,260

2013-2019 (0.698) (0.032) (0.097) (0.031) (0.038) (0.032) (0.362)

Kasparov present -1.427** -0.086** -0.142 0.025 0.028 -0.053** 0.694 5,427 420,348

1995-2001 (0.696) (0.035) (0.102) (0.025) (0.033) (0.025) (0.466)

Kasparov&Karpov present -0.848 -0.062 -0.124 0.031 -0.082** 0.051 0.377 2,624 207,880

1987-1994 (1.030) (0.059) (0.168) (0.033) (0.036) (0.039) (0.436)

Karpov present -1.843 -0.205** -0.148 -0.050 0.137* -0.088 2.316** 5,120 381,460

1976-1983 (2.357) (0.098) (0.399) (0.055) (0.071) (0.100) (0.895)

Fischer present+ 1.226* 0.054* 0.245** -0.075** 0.056* 0.018 -0.746*** 9,491 692,072

1962-1970 (0.660) (0.032) (0.100) (0.032) (0.030) (0.026) (0.274)

Hou Yifan present 4.557** -0.041 0.970*** -0.118** -0.055 0.172** 0.734 1,188 109,408

2014-2019 (1.999) (0.112) (0.341) (0.058) (0.057) (0.071) (0.752)

Aggregate effect++ -0.326 -0.037* 0.069 -0.006 0.011 -0.005 0.368** 26,960 2,086,428

(0.352) (0.019) (0.054) (0.011) (0.015) (0.015) (0.174)

Notes: Superstars’ games are excluded. A top player is defined as having an Elo rating in the top 25% among the competitors at the time of
the tournament. All regressions include player and year fixed effects, round fixed effects, event site fixed effects, average Elo rating in the
tournament (except for pre-1970 games, as Elo rating was adopted in 1970 by FIDE), player’s Elo rating (except pre-1970 games), board
complexity measured by our neural-network algorithm, opponent ACPL, player’s side (white or black), and number of moves played.
Clustered standard errors (clustered by tournament) are shown in parentheses.
+: Since no Elo rating information was available in Fischer’s era, we define the top players as the top chess players in the world from
1962-1970 other than Fischer. These players are Tigran Petrosian, Viktor Korchnoi, Boris Spassky, Vasily Smyslov, Mikhail Tal, Mikhail
Botvinnik, Paul Keres, Efim Geller, David Bronstein, and Samuel Reshevsky. Kasparov (2003) provides a detailed overview on each of these
players.
++: The sample is restricted to tournaments with Elo rating information available.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Figure 5: Superstar presence coefficients for top players over different superstar intensity levels.

Note: The figure presents the coefficients in Table 5 with 95% confidence intervals over different superstar
intensity levels.



Appendix (For Online Publication)

Table A.1: Variables list

Variable Name Variable Meaning

Superstar Present =1 if a superstar is present in a tournament.

Against Superstar =1 if a game is played against a superstar.

ELO Elo rating of a player.

ACPL Average Centipawn Loss of a player in a
game.

TotalBlunder Total number of blunders committed by a
player in a game. A move is considered a
blunder if the change in centipawn score is
more than 300 centipawns.

TotalMistake Total number of mistakes committed by a
player in a game. A move is considered a
mistake if the change in centipawn score is
between 100-300 centipawns.

Difficulty The board complexity metric estimated via
an Artificial Neural Network algorithm.

win =1 if a player wins his or her game.

draw =1 if a games ends in a draw.

loss =1 if a player loses his or her game.
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Table A.1: Variables list (cont.)

Variable Name Variable Meaning

white =1 if a player’s side is white.

moves Total number of moves played by a player in
a game.

Round-robin tournament An invitation based tournament system with
a limited number of participants. Each par-
ticipant plays against participants once or
twice, depending on the tournament length.
The participant who accumulates the high-
est number of points wins the tournament.

Swiss tournament A tournament system that is typically used
in open tournaments with a large pool of par-
ticipants. Following the results of the first
round, winners are paired with other win-
ners. Towards the end of the tournament,
strongest players with the highest number of
scores get paired. The participant who accu-
mulates the highest number of points wins
the tournament.
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Table A.2: An example pgn file.

[Event "GRENKE Chess Classic"]

[Site "Karlsruhe GER"]

[Date "2019.04.20"]

[EventDate "2019.04.20"]

[Round "1"]

[Result "0-1"]

[White "Vincent Keymer"]

[Black "Magnus Carlsen"]

[ECO "A56"]

[WhiteElo "2516"]

[BlackElo "2845"]

[PlyCount "162"]

1 d4 Nf6 2 c4 c5 3 d5 g6 4 Nc3 d6 5 e4 Bg7 6 Nf3 O-O 7 Be2 e5 8 O-O Ne8 9 Ne1 f5
10 eXf5 gXf5 11 f4 Nd7 12 Nd3 e4 13 Nf2 BXc3 14 bXc3 Ndf6 15 Be3 Ng7 16 Qe1 Bd7 17
Nd1 Ba4 18 h3 BXd1 19 QXd1 Qe8 20 Kf2 Qg6 21 Rg1 Kh8 22 a4 Rg8 23 Qf1 Nfh5 24
g3 Raf8 25 Qg2 Qf6 26 Rac1 Qd8 27 Qh2 Nf6 28 g4 Nd7 29 g5 Qa5 30 g6 h6 31 Rb1 Rb8
32 Qg3 Qd8 33 Ke1 Ne8 34 Kd2 Nf8 35 Bf2 Qe7 36 Ke3 Qf6 37 Kd2 NXg6 38 h4 Ne7 39
Qh3 RXg1 40 RXg1 Qf7 41 h5 Nf6 42 Bh4 b6 43 Rb1 Qf8 44 Rg1 Qf7 45 Rb1 Qg7 46 Rg1
Qf8 47 Kc2 Nfg8 48 Kd2 Qf7 49 Kc2 Rf8 50 Kd2 Qe8 51 Ra1 Rf7 52 a5 bXa5 53 RXa5 Nc8
54 Ra1 Qf8 55 Rb1 Nb6 56 Rg1 Rg7 57 RXg7 KXg7 58 Qg3+ Kh8 59 Qg6 a5 60 Bf1 a4 61
Kc2 a3 62 Kb3 Na4 63 Bh3 Qg7 64 QXg7+ KXg7 65 BXf5 Nf6 66 KXa3 NXc3 67 Bf2 Ne2
68 Ka4 NXh5 69 Ka5 Nf6 70 Kb6 Kf7 71 Kc7 Ke7 72 Be3 Nd4 73 Bg6 h5 74 Bf2 Nf3 75
Bf5 Nd2 76 Bh4 e3 77 Bd3 Nf3 78 BXf6+ KXf6 79 KXd6 h4 80 Kc7 Nd4 81 Kc8 e2 0-1
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Figure A.1: An example of a tournament table.

Note: The tournament table is obtained from Chessbase Mega Database 2020.

Figure A.2: Elo ratings of top chess players between 2013-2019.

Note: The blue line shows the average Elo rating of top chess players other than Carlsen (World ranking
2−10). Elo rating data is obtained from Chessbase Mega Database 2020.
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Figure A.3: Elo ratings of top chess players between 1995-2001.

Note: Elo rating data is obtained from Chessbase Mega Database 2020.

Figure A.4: Elo ratings of top chess players between 1987-1994.

Note: Elo rating data is obtained from Chessbase Mega Database 2020.
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Figure A.5: Elo ratings of top chess players between 1976-1983.

Note: Elo rating data is obtained from Chessbase Mega Database 2020.

Figure A.6: Elo ratings of top female chess players between 2014-2019.

Note: Judit Polgar is considered the strongest female chess player of all time, however
she stopped competing in female tournaments in 1990 when she was 14 years old. Hou Yifan stopped
competing in female tournaments after 2017. Elo rating data is obtained from FIDE available online at
https://ratings.fide.com
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Figure A.8: Computer evaluation of a game played by Carlsen in 2019.

Note: The game was played between Vincent Keymer (White) and Magnus Carlsen (Black) on April 20,
2019 during the first round of Grenke Chess Classic 2019. Keymer’s Average Centipawn Loss (ACPL) was
35.22 and Carlsen’s 26.17, calculated by using Equation 3. A higher ACPL means the player made more
mistakes according to the chess engine. The chess engine used for evaluations is Stockfish 11 with a depth of
19 moves.

Figure A.9: Complexity evaluation of a game played by Carlsen in 2019 using an Artificial Neural Network
(ANN) algorithm.

Note: The game was played between Vincent Keymer (White) and Magnus Carlsen (Black) on April 20,
2019 during the first round of Grenke Chess Classic 2019. Keymer’s Average Centipawn Loss (ACPL) was
35.22 and Carlsen’s 26.17 using our algorithm. Our neural-network board complexity estimate assigns an
expected ACPL score of 34.87. This score is substantially higher than the sample average, 26.56. The game
is within the top 10% of the sample in terms of complexity.
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Figure A.10: A position from Keymer vs. Carlsen (2019).

8 0Z0Z0Z0Z
7 Z0Z0Z0j0
6 0Z0o0m0o
5 Z0oPZBZP
4 0ZPZpO0A
3 J0m0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h
Note: This position is from Vincent Keymer (White) vs. Magnus Carlsen (Black), Grenke Chess Classic 2019
(white to play). Our neural-network algorithm calculates the probability of making an error as 0.52 (about
twice as high as the sample average) in an amount of 65 centipawns. In the game, white blundered (by
playing Bf2) in an amount of 180 centipawns, according to Stockfish. Before this blunder, the position was a
forced draw.

Figure A.11: Scatterplot of board complexity and ACPL scores.

Note: The board complexity measure is obtained via a neural-network algorithm. It is the "expected ACPL
score" according to the AI, depending on the complexity of a game. The estimated slope is 1.14 for the overall
sample of 32,000 games and 2.1 million moves.
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Figure A.12: Distribution of ACPL and board complexity scores.

Note: The board complexity measure is obtained via a neural-network algorithm. It is the "expected ACPL score"
according to the AI which depends on the complexity of a game. The average ACPL score in the sample is 25.49 and the
board complexity score is 26.57 for the overall sample with 32,000 games and 2.1 million moves. The neural-network was
trained with an independent sample consisting of 25,000 games and 2 million moves with games played between players
with "National Master" ranking on average.
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Figure A.13: Carlsen’s tournament performance (classical)

Note: Carlsen’s Elo rating data is obtained from FIDE.

Figure A.14: Kasparov’s tournament performance (classical)

Note: Kasparov’s Elo rating data is obtained from Chessbase Mega Database 2020.
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Figure A.15: Kasparov and Karpov’s tournament performance (classical)

Note: Kasparov’s and Karpov’s Elo rating data are obtained from Chessbase Mega Database 2020.

Figure A.16: Karpov’s tournament performance (classical)

Note: Karpov’s Elo rating data is obtained from Chessbase Mega Database 2020.
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Figure A.17: Hou Yifan’s tournament performance (classical)

Note: Hou Yifan’s Elo rating data is obtained from Chessbase Mega Database 2020.
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Table A.4: Performance in tournaments with and without Hou Yifan.

(1) (2) (3) (4) (5) (6) (7)

ACPL TotalBlunder TotalMistake win draw loss Difficulty

Superstar effect for

Top 25% players 4.344** -0.012 0.807** -0.104* -0.048 0.152** 1.204

(1.846) (0.112) (0.305) (0.054) (0.054) (0.066) (0.753)

Mid 50% players 1.143 0.015 0.076 -0.068 0.085* -0.017 1.172**

(1.039) (0.083) (0.207) (0.042) (0.047) (0.056) (0.447)

Bottom 25% players 1.511 -0.017 0.138 -0.050 -0.032 0.082 0.390

(1.699) (0.104) (0.236) (0.054) (0.044) (0.075) (0.690)

Number of moves 109,408 109,408 109,408 109,408 109,408 109,408 109,408

Number of games 1,188 1,188 1,188 1,188 1,188 1,188 1,188

Notes: Hou Yifan’s games are excluded. All regressions include player and year fixed effects, round fixed effects, event site fixed
effects, average Elo rating in the tournament, player’s Elo rating, board complexity measured by our neural-network algorithm,
opponent ACPL, player’s side (white or black), and number of moves played. Clustered standard errors (clustered by tournament) are
shown in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.5: Performance in tournaments with and without Fischer.

(1) (2) (3) (4) (5) (6) (7)

ACPL TotalBlunder TotalMistake win draw loss Difficulty

Superstar effect for

All players 0.465 0.021 0.046 -0.024* -0.006 0.030** -0.539***

(0.368) (0.017) (0.061) (0.014) (0.012) (0.015) (0.153)

Top players 1.226* 0.054* 0.245** -0.075** 0.056* 0.018 -0.746***

(0.660) (0.032) (0.100) (0.032) (0.030) (0.026) (0.274)

Number of moves 692,072 692,072 692,072 692,072 692,072 692,072 692,072

Number of games 9,491 9,491 9,491 9,491 9,491 9,491 9,491

Notes: Fischer’s games are excluded. Top 10 players are the top chess players in the world from 1962-1970 other than Fischer.+
All regressions include player and year fixed effects, round fixed effects, event site fixed effects, board complexity measured by our
neural-network algorithm, opponent ACPL, player’s side (white or black), and number of moves played. Clustered standard errors
(clustered by tournament) are shown in parentheses.
+: These players are Tigran Petrosian, Viktor Korchnoi, Boris Spassky, Vasily Smyslov, Mikhail Tal, Mikhail Botvinnik, Paul
Keres, Efim Geller, David Bronstein, and Samuel Reshevsky.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.6: Performance in tournaments with and without Kasparov & Karpov.

(1) (2) (3) (4) (5) (6) (7)

ACPL TotalBlunder TotalMistake win draw loss Difficulty

Superstar effect when both present

Top 25% players -0.174 -0.057 -0.034 0.014 -0.072* 0.058 0.692

(1.048) (0.052) (0.185) (0.031) (0.038) (0.041) (0.452)

Mid 50% players 0.088 -0.006 -0.093 0.021 -0.028 0.007 0.285

(0.568) (0.050) (0.084) (0.021) (0.026) (0.023) (0.347)

Bottom 25% players -2.137** -0.099* -0.174 0.063** -0.006 -0.057* 0.316

(0.935) (0.049) (0.146) (0.025) (0.036) (0.031) (0.418)

Number of moves 207,880 207,880 207,880 207,880 207,880 207,880 207,880

Number of games 2,624 2,624 2,624 2,624 2,624 2,624 2,624

Notes: Kasparov and Karpov’s games are excluded. Top 25% is defined as having an Elo rating in the top 25% among the competitors
at the time of the tournament. Bottom 25% is defined as having an Elo in the bottom quartile. All regressions include player and year
fixed effects, round fixed effects, event site fixed effects, average Elo rating in the tournament, player’s Elo rating, board complexity
measured by our neural-network algorithm, opponent ACPL, player’s side (white or black), and number of moves played. Clustered
standard errors (clustered by tournament) are shown in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.7: Performance in tournaments with and without Karpov.

(1) (2) (3) (4) (5) (6) (7)

ACPL TotalBlunder TotalMistake win draw loss Difficulty

Superstar effect for

Top 25% players -1.843 -0.205** -0.148 -0.050 0.137* -0.088 2.316**

(2.357) (0.098) (0.399) (0.055) (0.071) (0.100) (0.895)

Mid 50% players -0.915 -0.249*** 0.091 -0.033 0.047 -0.014 1.445

(2.103) (0.095) (0.289) (0.047) (0.064) (0.084) (1.042)

Bottom 25% players 2.375 -0.225* 0.820** -0.245*** -0.066 0.311 1.445

(2.304) (0.135) (0.397) (0.076) (0.190) (0.245) (1.023)

Number of moves 381,460 381,460 381,460 381,460 381,460 381,460 381,460

Number of games 5,120 5,120 5,120 5,120 5,120 5,120 5,120

Notes: Karpov’s games are excluded. Top 25% is defined as having an Elo rating in the top 25% among the competitors at the
time of the tournament. Bottom 25% is defined as having an Elo in the bottom quartile. All regressions include player and year
fixed effects, round fixed effects, event site fixed effects, average Elo rating in the tournament, player’s Elo rating, board
complexity measured by our neural-network algorithm, opponent ACPL, player’s side (white or black), and number of moves
played. Clustered standard errors (clustered by player-year) are shown in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.8: Performance in tournaments with and without Kasparov.

(1) (2) (3) (4) (5) (6) (7)

ACPL TotalBlunder TotalMistake win draw loss Difficulty

Superstar effect for

Top 25% players -1.253* -0.061* -0.111 0.025 0.045 -0.069*** 0.496

(0.696) (0.034) (0.103) (0.025) (0.030) (0.023) (0.407)

Mid 50% players -0.229 -0.002 -0.054 0.028* 0.003 -0.031 -0.191

(0.538) (0.027) (0.072) (0.017) (0.023) (0.020) (0.387)

Bottom 25% players 0.559 -0.005 0.049 -0.027 0.012 0.014 -0.097

(0.688) (0.041) (0.096) (0.020) (0.024) (0.029) (0.490)

Number of moves 420,348 420,348 420,348 420,348 420,348 420,348 420,348

Number of games 5,427 5,427 5,427 5,427 5,427 5,427 5,427

Notes: Kasparov’s games are excluded. Top 25% is defined as having an Elo rating in the top 25% among the competitors at the time
of the tournament. Bottom 25% is defined as having an Elo in the bottom quartile. All regressions include player and year fixed
effects, round fixed effects, event site fixed effects, average Elo rating in the tournament, player’s Elo rating, board complexity
measured by our neural-network algorithm, opponent ACPL, player’s side (white or black), and number of moves played. Clustered
standard errors (clustered by player-year) are shown in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.9: Performance in tournaments with and without Carlsen.

(1) (2) (3) (4) (5) (6) (7)

ACPL TotalBlunder TotalMistake win draw loss Difficulty

Superstar effect for

Top 25% players -0.080 0.040 -0.128 0.010 0.022 -0.032 0.756**

(0.698) (0.032) (0.097) (0.031) (0.038) (0.032) (0.362)

Mid 50% players -1.221* 0.008 -0.186* -0.002 0.072** -0.069** 0.241

(0.680) (0.033) (0.097) (0.029) (0.030) (0.030) (0.314)

Bottom 25% players -0.680 -0.004 -0.073 -0.013 0.059 -0.046 0.770*

(0.993) (0.044) (0.128) (0.035) (0.041) (0.039) (0.423)

Number of moves 275,260 275,260 275,260 275,260 275,260 275,260 275,260

Number of games 3,110 3,110 3,110 3,110 3,110 3,110 3,110

Notes: Carlsen’s games are excluded. Top 25% is defined as having an Elo rating in the top 25% among the competitors at the time of the
tournament. Bottom 25% is defined as having an Elo in the bottom quartile. All regressions include player and year fixed effects, round
fixed effects, event site fixed effects, average Elo rating in the tournament, player’s Elo rating, board complexity measured by our
neural-network algorithm, opponent ACPL, player’s side (white or black), and number of moves played. Clustered standard errors
(clustered by player-year) are shown in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.10: List of tournaments (classical)

Year Tournament Name

Panel A. Carlsen Present
2019 GCT Croatia 2019, Grenke Chess Classic 2019, Gashimov Memorial 2019, Norway Chess 2019,

Sinquefield 2019, Tata Steel 2019

2018 Gashimov Memorial 2018, Sinquefield 2018, Biel 2018, Norway Chess 2018,

Grenke Chess Classic 2018, Tata Steel 2018

2017 London Classic 2017, Norway Chess 2017, Sinquefield 2017, Grenke Chess Classic 2017,

Tata Steel 2017

2016 Norway Chess 2016, Tata Steel 2016, Bilbao Masters 2016

2015 London Classic 2015, Sinquefield 2015, Norway Chess 2015, Gashimov Memorial 2015,

Grenke Chess Classic 2015, Tata Steel 2015

2014 Norway Chess 2014, Zuerich Chess Challange 2014, Sinquefield 2014, Gashimov Memorial 2014

2013 Moscow Tal Memorial 2013, Norway Chess 2013, Candidates Tournament 2013,

Tata Steel 2013, Sinquefield 2013

Panel B. Carlsen Not Present
2019 U.S. Championship 2019, Dortmund 2019

2018 Candidates Tournament 2018, U.S. Championship 2018, Dortmund 2018

2017 U.S. Championship 2017, Dortmund 2017, Gashimov Memorial 2017

2016 London Classic 2016, Sinquefield 2016, Gashimov Memorial 2016, Candidates Tournament 2016,

Moscow Tal Memorial 2016, U.S. Championship 2016, Dortmund 2016

2015 Dortmund 2015, Zuerich Chess Challenge 2015, Tbilisi FIDE GP 2015,

Khanty-Mansiysk FIDE GP 2015, Capablanca Memorial 2015, U.S. Championship 2015

2014 Beijing Sportaccord Basque 2014, London Classic 2014, Tashkent FIDE GP 2014,

Dortmund 2014, Tata Steel 2014, U.S. Championship 2014, Candidates Tournament 2014,

Baku FIDE GP 2014, Capablanca Memorial 2014, Bergomo ACP Golden Classic 2014

2013 Paris FIDE GP 2013, Dortmund 2013, Thessaloniki FIDE GP 2013,

Zug FIDE GP 2013, Beijing FIDE GP 2013, Zuerich Chess Challenge 2013,

Grenke Chess Classic 2013, Capablanca Memorial 2013, U.S. Championship 2013
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Table A.11: List of tournaments (classical)

Year Tournament Name

Panel A. Kasparov Present
2001 Astana 2001, Zuerich 2001, Linares 2001, Corus Wijk aan Zee 2001

2000 Fujitsu Siemens Giants 2000, Sarajevo Bosnia 2000, Linares 2000, Corus Wijk aan Zee 2000

1999 Sarajevo Bosnia 1999, Linares 1999, Hoogovens Wijk aan Zee 1999

1998 Linares 1998

1997 Tilburg 1997, Novgorod 1997, Linares 1997

1996 Las Palmas 1996, Dos Hermanas 1996, Amsterdam Euwe Memorial 1996

1995 Horgen 1995, Amsterdam Euwe Memorial 1995, Novgorod 1995

Riga Tal Memorial 1995

Panel B. Kasparov Not Present
2001 Sigeman & Co 2001, Biel 2001, Dortmund 2001, Pamplona 2001, Dos Hermanas 2001

2000 Japfa Classic 2000, Dortmund 2000, Sigeman & Co 2000, Biel 2000

1999 Pamplona 1999, Lost Boys Amsterdam 1999, Dortmund 1999, Sigeman & Co 1999

Dos Hermanas 1999, Biel 1999

1998 Hoogovens Wijk aan Zee 1998, Tilburg 1998, Dortmund 1998, Madrid 1998, Pamplona 1998

1997 Hoogovens Merrillville 1997, Hoogovens Wijk aan Zee 1997, Sigeman & Co 1997, Ubeda 1997,

Dos Hermanas 1997, Lost Boys 1997, Dortmund 1997, Madrid 1997, Belgrade Investbank 1997

1996 Koop Tjuchem 1996, Donner Memorial 1996, Hoogovens Wijk aan Zee 1996,

Tilburg 1996, Dortmund 1996, Dos Hermanas 1996, Madrid 1996

1995 Belgrade Investbank 1995, Donner Memorial 1995, Biel 1995, Madrid 1995,

Dos Hermanas 1995, Groningen 1995, Dortmund 1995
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Table A.12: List of tournaments (classical)

Year Tournament Name

Panel A. Kasparov & Karpov Both Present
1994 Linares 1994

1993 Linares 1993

1992
1991 Reggio Emilia 1991, Tilburg 1991, Amsterdam Euwe Memorial 1991, Linares 1991

1990
1989 World Cup Skelleftea 1989

1988 USSR Championship 1988, World Cup Belfort 1988, Optiebeurs Amsterdam 1988

1987 Brussels 1987

Panel B. Kasparov & Karpov Neither Present
1994 Donner Memorial 1994, Dortmund 1994, Hoogovens Wijk aan Zee 1994, Groningen 1994,

Munich 1994

1993 Antwerp 1993, Amsterdam VSB 1993, Madrid 1993, Las Palmas 1993, Munich 1993

1992 Alekhine Memorial 1992, Amsterdam Euwe Memorial 1992, Hoogovens Wijk aan Zee 1992,

Groningen 1992, Munich 1992

1991 World Cup Reykjavik 1991, Hoogovens Wijk aan Zee 1991, Groningen 1991, Munich 1991

1990 Tilburg 1990, Hoogovens Wijk aan Zee 1990, Prague 1990, Groningen 1990, Munich 1990

1989 Hoogovens Wijk aan Zee 1989, Groningen 1989, Munich 1989, Amsterdam Euwe Memorial 1989

1988 Amsterdam Euwe Memorial 1988, OHRA Amsterdam 1988, Linares 1988, Hastings 1988

1987 Belgrade Investbanka 1987, Hoogovens Wijk aan Zee 1987, Interpolis 1987,

OHRA Amsterdam 1987, Reykjavik 1987
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Table A.13: List of tournaments (classical)

Year Tournament Name

Panel A. Karpov Present
1983 Interpolis 1983, International DSB Mephisto GM 1983, USSR Final 1983,

Bath 1983, Linares 1983

1982 Interpolis 1982, Turin 1982, Hamburg 1982, London Phillips 1982,

Mar del Plata Clarin Masters 1982

1981 IBM Herinnerungs Toernooi 1981, Moscow 1981, Linares 1981

1980 Buenos Aires 1980, Interpolis 1980, IBM Kroongroep 1980,

Bugojno 1980, Bad Kissingen 1980

1979 Interpolis 1979, Waddinxveen KATS 1979, Montreal International 1979,

GER International 1979

1978 Bugojno 1978

1977 Interpolis 1977, October Revolution 1977, Las Palmas 1977, GER International 1977

1976 USSR Final 1976, Montilla 1976, Manila Marlboro 1976, Amsterdam 1976,

Skopje Solidarnost 1976

Panel B. Karpov Not Present
1983 Jakarta International 1983, Hoogovens Wijk aan Zee 1983

1982 Bugojno 1982, Moscow Interzonal 1982, Las Palmas Interzonal 1982, Toluca Interzonal 1982,

Niksic International 1982, Hoogovens Wijk aan Zee 1982

1981 Las Palmas 1981, IBM Herinnerungs Toernooi 1981, Interpolis 1981,

Hoogovens Wijk aan Zee 1981

1980 Buenos Aires 1980, London Phillips 1980, Hoogovens Wijk aan Zee 1980, Las Palmas 1980,

Reykjavik International 1980

1979 Buenos Aires Clarin 1979, Riga Interzonal 1979, Buenos Aires Interzonal 1979, Vidmar Memorial 1979,

IBM 1979, Hoogovens Wijk aan Zee 1979, Buenos Aires Konex 1979

1978 Interpolis 1978, Reykjavik International 1978, Hoogovens Wijk aan Zee 1978, Las Palmas 1978

IBM 1978, Clarin 1978

1977 Geneve 1977, Vidmar Memorial 1977, Hoogovens Wijk aan Zee 1977, IBM 1977

1976 Interzonal 1976, Las Palmas 1976, Reykjavik International 1976, Hoogovens Wijk aan Zee 1976,

IBM 1976



Table A.14: List of tournaments (classical)

Year Tournament Name

Panel A. Fischer Present
1970 Interzonal 1970, Buenos Aires 1970, Rovinj Zagreb 1970

1969
1968 Vinkovci 1968, Nathanya 1968,

1967 Skopje 1967, Monaco Grand Prix 1967

1966 Piatigorsky Cup 1966, U.S. Championship 1966

1965 U.S. Championship 1965, Capablanca Memorial 1965

1964
1963 U.S. Championship 1963

1962 U.S. Championship 1962, Candidates Tournament 1962, Interzonal 1962

Panel B. Fischer Not Present
1970 Vinkovci 1970, IBM Amsterdam 1970, Budapest 1970, Sarajevo 1970, Caracas 1970,

Hoogovens Wijk an Zee 1970, Costa del Sol 1970, Skopje 1970, Rubinstein Memorial 1970,

Christmas Congress 1970

1969 Monaco Grand Prix 1969, Hoogovens Wijk an Zee 1969, Venice 1969

U.S. Championship 1969, Palma de Mallorca 1969, IBM Amsterdam 1969, Sarajevo 1969,

Christmas Congress 1969, Rubinstein Memorial 1969, Capablanca Memorial 1969

1968 Rubinstein Memorial 1968, Christmas Congress 1968, Palma de Mallorca 1968,

U.S. Championship 1968, Bamberg 1968, IBM Amsterdam 1968, Sarajevo 1968

Hoogovens Wijk an Zee 1968, Monaco Grand Prix 1968, Skopje 1968

1967 Winnipeg 1967, October Revolution Leningrad 1967, October Revolution Moscow 1967,

Capablanca Memorial 1967, Palma de Mallorca 1967, Sarajevo 1967, Hoogovens Beverwijk 1967,

Christmas Congress 1967, Rubinstein Memorial 1967, Venice 1967, IBM Amsterdam 1967

1966 IBM Amsterdam 1966, Sarajevo 1966, Palma de Mallorca 1966

Hoogovens Beverwijk 1966, Venice 1966, Rubinstein Memorial 1966, Christmas Congress 1966

1965 ZSK International 1965, Zagreb 1965, Mer del Plata 1965,

IBM Amsterdam 1965, Sarajevo 1965, Hoogovens Beverwijk 1965,

Christmas Congress 1965, Rubinstein Memorial 1965

1964 Buenos Aires 1964, Capablanca Memorial 1964, Rubinstein Memorial 1964,

Interzonal 1964, IBM Amsterdam 1964, Sarajevo 1964, Hoogovens Beverwijk 1964,

Christmas Congress 1964, ZSK International 1964

1963 Piatigorsky Cup 1963, Alekhine Memorial 1963, IBM Amsterdam 1963, Sarajevo 1963, Hoogovens

Beverwijk 1963, Rubinstein Memorial 1963, Christmas Congress 1963, Capablanca Memorial 1963

1962 Mer del Plata 1962, Sarajevo 1962, Hoogovens Beverwijk 1962,

Rubinstein Memorial 1962, Christmas Congress 1962, Capablanca Memorial 1962



Table A.15: List of tournaments (classical)

Year Tournament Name

Panel A. Hou Yifan Present
2015 Monte Carlo FIDE GP 2015

2014 Lopota FIDE GP 2014, Khanty-Mansiysk FIDE GP 2014,

Sharjah FIDE GP 2014

Panel B. Hou Yifan Not Present
2019 Skolkovo FIDE GP 2019, Saint Louis Cairns Cup 2019 spacespacespacespacespacespacspacespacspac

2016 Khanty-Mansiysk FIDE GP 2016, Chengdu FIDE GP 2016,

Batumi FIDE GP 2016, Tehran FIDE GP 2016
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